The best solution for
starting your AI applications.
Provided by Renesas Electronics Corporation
This project is maintained by renesas-rz
Hosted on GitHub Pages — Theme by orderedlist
Function Name of AI Application | TLT Project Name | AI Model | Task Type | Download Dataset Name *1 |
Target product in AI Application |
|
---|---|---|---|---|---|---|
RZ/V2L | RZ/V2H | |||||
01_Head_count | 01_Head_count_yolov3 | YOLOv3 | Object detection | Head Count(140MB) | ✔ | ✔ |
02_Line_crossing_object_counting | 02_Line_crossing_object_counting_tinyyolov3 | TinyYOLOv3 | Object detection | Line Cross Object Counting(141MB) | ✔ | - |
02_Line_crossing_object_counting_yolov3 | YOLOv3 | Object detection | Line Cross Object Counting(141MB) | - | ✔ | |
04_Safety_helmet_vest_detection | 04_Safety_helmet_vest_detection_yolov3 | YOLOv3 | Object detection | Safety Helmet Vest Detection(3.4GB) | ✔ | - |
07_Animal_detection | 07_Animal_detection_yolov3 | YOLOv3 | Object detection | Animal Detection(1.83GB) | ✔ | ✔ |
09_Human_gaze_detection | 09_Human_gaze_detection_resnet18 | ResNet18 | Classification | Human gaze detection resnet18(17GB)*2 | ✔ | ✔ |
09_Human_gaze_detection_tinyyolov2 | TinyYOLOv2 | Object detection | Human gaze detection(4.43GB)*2 | ✔ | ✔ | |
11_Head_count_topview | 11_Head_count_topview_yolov3 | YOLOV3 | Object detection | Head Count Topview(1.8GB) | ✔ | ✔ |
12_Hand_gesture_recognition_v2 | 12_Hand_gesture_recognition_v2_resnet_18 | ResNet18 | Classification | Hand Gesture Recognition Resnet(21.9GB) | ✔ | - |
12_Hand_gesture_recognition_v2_tinyyolov3 | TinyYOLOv3 | Object detection | Hand Gesture Recognition Tiny Yolo(21.9GB) | ✔ | - | |
12_Hand_gesture_recognition_yolov3 | YOLOv3 | Object detection | Hand gesture recognitionyolov3(160MB) | - | ✔ | |
13_Car_ahead_departure_detection | 13_Car_ahead_departure_detection_tinyyolov3 | TinyYOLOv3 | Object detection | Coco | ✔ | - |
Q01_footfall_counter | Q01_footfall_counter_tinyyolov3 | TinyYOLOv3 | Object detection | Coco | ✔ | - |
Q01_footfall_counter_yolov3 | YOLOV3 | Object detection | Coco | - | ✔ | |
Q03_smart_parking | Q03_smart_parking | Custom model | Classification | Smart Parking(414MB) | ✔ | - |
Q04_fish_classification | Q04_fish_classification_resnet34 | ResNet34 | Classification | Fish Classification(1.57GB) | ✔ | - |
Q06_expiry_date_detection | Q06_expiry_date_detection_tinyyolov3 | TinyYOLOv3 | Object detection | Expiry Date Detection(1.32GB) | ✔ | - |
Q06_expiry_date_detection_yolov3 | YOLOv3 | Object detection | Expiry Date Detection(1.32GB) | - | ✔ | |
Q07_plant_disease_classification | Q07_plant_disease_classification_resnet34 | ResNet34 | Classification | Plant Disease(1.34GB) | ✔ | - |
Q08_object_counter | Q08_object_counter_animal_tinyyolov3 | TinyYOLOv3 | Object detection | Object Counter Animal(6.97GB) | ✔ | - |
Q08_object_counter_animal_yolov3 | YOLOv3 | Object detection | Object Counter Animal(6.97GB) | - | ✔ | |
Q08_object_counter_coco_tinyyolov3 | TinyYOLOv3 | Object detection | Coco | ✔ | - | |
Q08_object_counter_coco_yolov3 | YOLOv3 | Object detection | Coco | - | ✔ | |
Q08_object_counter_vehicle_tinyyolov3 | TinyYOLOv3 | Object detection | Object Counter Vehicle(1.5GB) | ✔ | - | |
Q08_object_counter_vehicle_yolov3 | YOLOv3 | Object detection | Object Counter Vehicle(1.5GB) | - | ✔ | |
Q09_crack_segmentation | Q09_crack_segmentation_unet | UNet | Segmentation | Crack Segmentation(0.99GB) | ✔ | ✔ |
Q10_suspicious_person_detection | Q10_suspicious_person_detection_tinyyolov3 | TinyYOLOv3 | Object detection | Suspicious Person Detection(1.57GB) | ✔ | - |
Q10_suspicious_person_detection_yolov3 | YOLOv3 | Object detection | Suspicious Person Detection(1.57GB) | - | ✔ | |
Q11_fish_detection | Q11_fish_detection_tinyyolov3 | TinyYOLOv3 | Object detection | Fish Detection(700MB) | ✔ | - |
Q11_fish_detection_yolov3 | YOLOv3 | Object detection | Fish Detection(700MB) | - | ✔ |
To start using RZ/V AI Transfer Learning Tool, PC that can display the desktop with the following environment is recommended.
Description | Specification |
---|---|
Linux OS | Ubuntu 20.04 and above. |
Processor | Intel(R) Xeon(R) and above. |
GPU | Any GPU with CUDA. |
Storage | At least 100GB of free space is necessary. |
Description | Specification |
---|---|
Python | 3.10.5 |
Docker | 27.0.3 |
This chapter describes the installation procedure when using RZ/V AI Transfer Learning Tool alone.
Folder or File Name | Description |
---|---|
rzv_ai_tlt_v4.00/ | Working directory. |
docs/ | User's Manual. |
tlt_backend
directory and install the tool.rzv_ai_tlt_v4.00
directory and launch the tool.Once the installation is complete, you can retrain the model.
rzv_ai_tlt_v4.00/tlt_backend/assets/(any YAML file of TLT project)/config.yaml
.rzv_ai_tlt_v4.00/tlt_backend/assets/Q03_smart_parking/config.yaml
.Smart Parking
.rzv_ai_tlt_v4.00/tlt_backend/datasets/
.rzv_ai_tlt_v4.00/tlt_backend/datasets/Q03_smart_parking/
.rzv_ai_tlt_v4.00/tlt_backend/assets/(Your TLT prject name)
.rzv_ai_tlt_v4.00/tlt_backend/datasets/Q03_smart_parking/valid/occupied/0.jpg
.Q03_smart_parking
is a classification that predicts whether it is "occupied" or "empty", the result is displayed as a string.